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The development of a ten-stage electrical micro-orifice cascade impactor (EMCI) for 1 

the real time monitoring of aerosol size distribution from 32 nm to 10 µm 2 

Chi-Yu Tien1, Michel Attoui2, Ran-Hao Ke1, Chuen-Jinn Tsai1, * 3 

1 Institute of Environmental Engineering, National Chiao Tung University No. 4 

1001,University Road, Hsinchu, 30010, Taiwan 5 

2 University Paris Est Creteil, University Paris-Diderot, Paris, France 6 

Abstract 8 

________________________________________________________________________________________________________________ 7 

In this study, an electrical micro-orifice cascade impactor (EMCI) with the operating 9 

flowrate of 16.7 L/min was developed for size distribution monitoring in real-time using the 10 

electrometers. The EMCI consists of a NCTU micro-orifice cascade impactor (NMCI), a 11 

NCTU unipolar charger and a Keithley 6514 electrometer. To reduce signal noise, the main 12 

body of the impactors is designed to have a 3-layer structure based on the concept of a 13 

faraday cage. Inside the unipolar charger, a Pt wire with 6 mm in length and 100 µm in 14 

diameter was used as the charging needle. Aerosol particles are charged first when passing 15 

through the charger. After the charged particles are collected on the impaction plates, the low 16 

current signal from each of all stages is detected using the electrometer and the measured 17 

currents are then converted to size-classified number concentrations by the theoretical 18 

equation corrected for the particle charging efficiency. The impactor and the unipolar charger 19 

were calibrated first. The calibration results of the impactor showed that the cut-off 20 

aerodynamic diameters (dpa50) of 9.92, 5.62, 2.48, 1.02, 0.563, 0.321, 0.178, 0.097, 0.056 and 21 

0.032 µm, which are very close to the design values at the operating flow rate of 16.7 L/min. 22 

The operating voltage of the unipolar charger ranged between +2.6 to +3.8 kV with the 23 

optimal charging efficiency found at +3.6 kV. Comparing with the ELPI+ charger, the 24 
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charging efficiency is nearly the same when the particle size is greater than 56 nm up to 10 25 

µm. However, the charging efficiency in the size range of 10 to 56 nm is higher than that of 26 

the ELPI+ charger by as much as 93 to 11 %. The signals of the EMCI were compared with 27 

those of the TSI Aerosol Electrometer (AE) and found that the bias of the EMCI is less than 28 

15 % in the range of 3-1500 fA. Finally, the EMCI was used for the size distribution 29 

measurement of laboratory generated aerosols. Test results showed that the size distribution 30 

measured by EMCI agrees well with that of the SMPS in nanoparticle size range. More 31 

calibration studies and comparison tests are under way using multiple electrometers installed 32 

at all stages. 33 

Keywords: impactor, micro-orifice cascade impactor, unipolar charger, electrostatic effect, 34 

aerosol measurement 35 

*Corresponding author email: 

________________________________________________________________________________________________________________ 36 

cjtsai@mail.nctu.edu.tw,  37 

Telephone No. +886 35731880, Fax No. +886 35727835 38 

 39 

1. Introduction 40 

Cascade impactors are used to measure aerosol mass distributions and the collected 41 

samples can further be analyzed for chemical compositions (Chen et al. 2010; Kim et al. 2012; 42 

Kudo et al. 2012; Wang et al. 2010; Zhu et al. 2010; Zhu et al. 2012). Traditionally, the 43 

smallest cutoff aerodynamic diameter (dpa50) of a cascade impactor is around 0.5 µm, which 44 

leads to a poor size resolution of submicron particles and nanoparticles. To obtain a lower 45 

dpa50, improved cascade impactors have been developed. For example, Hering et al. (1979) 46 

have designed and tested a 8-stage low pressure impactor (LPI) with 4.0, 2.0, 1.0, 0.5, 0.26, 47 

mailto:cjtsai@mail.nctu.edu.tw�
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0.11 0.075 and 0.05 µm of cut-off aerodynamic diameter (dpa50) for each stage impactor 48 

under 1.0 L/min of operating flowrate. The operating pressure was controlled from 8 to 150 49 

mmHg at last four stage impactor for ultrafine particle collection. The 8-stage Micro-orifice 50 

uniform deposit impactor (MOUDI) was developed by Marple et al., (1991). The range of 51 

dpa50 of 10-stage MOUDI is between 0.056 to 18 µm. To collect nanoparticles, the nozzle 52 

diameter has to be as small as 52 µm and there are 2000 nozzles in the last stage to increase 53 

the inertial impaction force of nanoparticle. However, some practical problems such as solid 54 

particle bounce, overloading of collected particles on the impaction plate and nozzle clogging 55 

which may cause sampling bias. Many efforts have been made to resolve these problems. For 56 

example, different types of impaction substrates such as oil-coated substrates (Turner and 57 

Hering, 1987; Pak et al. 1992; Peters et al. 2001; Liu et al. 2011; Tsai et al. 2012), porous 58 

substrates (Huang et al. 2005; Huang et al. 2001) and specially designed substrates (Chang et 59 

al. 1999; Tsai and Cheng, 1995) were used to reduce solid particle bounce. For increasing the 60 

particle loading capacity on impaction substrates, rotating substrates (Marple et al. 1991; Tsai 61 

et al. 2012), oil-soaked Teflon filters (Turner and Hering 1987; Tsai et al. 2012) and 62 

impaction plates of special designs (Tsai and Cheng, 1995) provide possible solutions. To 63 

avoid nozzle clogging during long-term or high aerosol concentration sampling, new-type of 64 

micro-orifice nozzle plate with stronger and smoother structure of nozzles as compared to 65 

that of the MOUDI was developed by Liu et al. (2013). However, the long-term ambient 66 
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sampling is necessary for ensuring the weight of the collected particle is higher than the 67 

minimum detected limit of the micro-balance. Due to the issue, the aerosol distribution can 68 

only be monitored in daily. To monitor the variations of the aerosol distribution in real-time, 69 

the electrical low pressure impactor (ELPI) was developed. The operation principle of the 70 

ELPI is that the particle will be charged first by a charger before introducing into the 71 

impactor. The low current signal will then be detected by an electrometer when the charged 72 

particle is collected on the impaction plate. After that, the current will be transported to 73 

number concentration using the theoretical equation in every 1 sec of frequency. However, 74 

even though the ELPI can be used on measuring the aerosol size distribution in real-time, the 75 

concern in the traditional LPI still exist, the solid particle bounce.  Moreover, the study have 76 

displayed that the relatively larger interstage pressure drop as compared to MOUDI, reduces 77 

potential evaporation of volatile aerosol species (Chow and Watson, 2007). Furthermore, the 78 

charging efficiency of the ELPI charger was tested and showed the very low efficiency for 79 

particle size less than 30 nm in previous study.  80 

The aims of this study is to develop an Electrical micro-orifice cascade impactor (EMCI) 81 

which can be used to measure the size distribution in real-time and solve the most practical 82 

concerns in traditional cascade impactor with 16.7 L/min of operating flowrate. The EMCI 83 

consists of the NCTU unipolar charger, the NMCI and the Keithley Electrometer (EM-K, 84 

model 6514, Keithley Instrument Inc). The NCTU unipolar charger which showed the higher 85 
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charging efficiency for nanoparticle as compared to ELPI charger was designed and tested 86 

under 16.7 L/min operating flowrate and +3.6 kV of supplied voltage in previous study. The 87 

casing and the nozzle plate of the NMCI was redesigned for avoiding the environmental noise 88 

which induce the measurement bias on low current detection and reducing the flowrate from 89 

30 to 16.7 L/min, respectively. After fabrication, the particle collection efficiency, 90 

electrometer comparison and number concentration were tested.  91 

 92 

2. Experiment Methods 93 

Modification of the impactor 94 

The casing was redesigned refer to the design of the ELPI (Keskinen et al., 1992) and the 95 

Faraday Cup (FC) to make sure the noise was blocked effectively on EMCI. The design 96 

values of dpa50 from first to last stage impactor were 10.0, 5.6, 2.5, 1.0, 0.56, 0.32, 0.18, 0.1, 97 

0.056 and 0.032 µm, respectively. The after filter stage was placed behind the 10th stage 98 

impactor for collecting the particle size less than 32 nm. The schematic diagram of the 99 

bottom casing is shown as the Fig 1 (a), and the upper casing for nozzle plate of the NMCI 100 

(Chien et al., 2016) is still used on the EMCI.  The bottom casing consists of four parts, from 101 

inside to outside are the inner casing, insulator layer, outer casing and a pin, respectively. The 102 

stainless steel was used as the material for inner and outer casing; the peek was used for 103 

insulator layer and the pin was fabricated by copper (Cu). The conductive filter is placed 104 
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nearing the insulator of the after filter stage which have the similar structure to the bottom 105 

casing shown in Fig 1(b). In this system, when the charged particle was collected on the 106 

impaction plate, the low current signal will be transported and detected using the electrometer 107 

via the pin. The main function of the outer casing with metal as material is to build the 108 

electrostatic shielding effect for noise prevention; and the insulator layer is used to block the 109 

inner and outer casing to avoid the current loss. 110 

To reduce the flowrate from 30 to 16.7 L/min, the nozzle size and number of the nozzle for 111 

each stage impactor were also redesigned based on the parameters of the NMCI and Stokes 112 

number at 50 % of particle collection efficiency (Stk50). For 0-5th stage impactor, the nozzle 113 

sizes were re-calculated and the number of the nozzle were maintained. For 6-10th impactor, 114 

the nozzle plate of the NMCI were used by adding the nozzle mask on the nozzle inlet to 115 

reduce the number of the nozzle and maintain the nozzle size because of the high cost of the 116 

LIGA process for micro-orifice nozzle plate. The size of the nozzle mask was designed using 117 

the continuously equation to maintain the pressure drop of each stage impactor comparing 118 

with NMCI. Therefore, the jet-to-plate distance was the only parameter to be adjusted for 119 

ensuring the dpa50

122 

 were same as the design value due to the bias during manual cutting of the 120 

nozzle mask.  121 
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Particle collection efficiency and electrometer comparison 123 

The low current signal was compared using aerosol electrometer (AE, TSI) and Keithley 124 

electrometer (EM-K) for measurement accuracy verification. Polydisperse particles were first 125 

generated by the constant output atomizer (TSI Model 3076) from the DOS solution with the 126 

concentration of 0.001 % (v/v). The aerosol flow was passed through a tubular furnace 127 

(Lindberg/Blue, Model HTF55322C, USA) at a fixed temperature of 300 0

The experimental setup for particle collection efficiency calibration of 5-10

C to produce a 128 

relatively narrow size distribution by the evaporation-condensation process. Monodisperse, 129 

singly charged particles were then generated by the electrostatic classifier (EC, TSI Model 130 

3080) equipped with the nano-differential mobility analyzer (DMA, TSI Model 3085). To 131 

minimize the effect of multiple charges on the monodispersity of the classified particles (Pui 132 

and Liu, 1979), only particles larger than the count median diameter (CMD) were classified. 133 

After the downstream of the EC, the aerosol flow was introduced into the AE and the after 134 

filter stage equipped with the EM-K under same operating flowrate, respectively. The more 135 

comparison of the electrometer was tested in further experiment. 136 

th stage 137 

impactor was refer to Liu et al. (2013). Moreover, after the electrometer comparison, the 138 

collection efficiency of nanoparticle was also measured using the electrometers detection is 139 

shown in Fig. 2. The low current signal generated when the charged particle was collected on 140 

the impaction plate was monitored using the EM-K. The other particle which pass through 141 
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the impactor was collected by AE. The collection efficiency that measured by two 142 

electrometers (ηAE + EM-K

 144 

) was then calculated by the following equation: 143 

%)
II

I(η
KEMdown

KEM
EMAE 100×

+
=

−

−
+                                                                                         (1) 145 

 146 

where the Idown is the aerosol currents at the outlet of the tested impactors measured by the 147 

AE equipped with a home-made faraday gage (fA). IEM-K

The micron and sub-micron monodisperse aminefluoresc (AF) particles from 0.6-11 µm of 150 

range were generated using the Vibration Orifice Monodisperse Aerosol Generator (VOMAG, 151 

TSI model 3450) for 0-4

 is the aerosol currents that detected 148 

using the EM-K when the charged particle was collected (fA). 149 

th stage impactor calibration. The calibration was conducted on two 152 

parts, with Aerodynamic Particle Sizer (APS, TSI model 3321) and the system that 153 

combining with the charger and the EM-K, for particle collection efficiency comparison as 154 

shown in Fig 3(a) and 3(b), respectively. The particles were introduced to the Neutralizer 155 

(TSI model 3054) first for electrical neutrality. The mixing chamber was used to dry the 156 

particle before introducing into the tested impactor or charger. For the APS system, the 157 

particle collection efficiency (ηAPS

 159 

) was then calculated by the following equation:   158 
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%)
N

N
(η

up

down
APS 1001 ×−=                                                                                                    (2) 160 

 161 

where the Nup and Ndown are the number concentrations of the upstream and downstream 162 

impactor that measured by APS, respectively. For the charger and electrometer system, the 163 

monodisperse particle was charged before introducing into the tested impactor equipped with 164 

after filter stage. Two electrometers (EM-K1 and EM-K2) were used to detect the signals 165 

from the tested stage impactor and after filter stage, respectively. The collection efficiency 166 

measured using the electrometer-charger system (ηEM-K

 168 

) was calculated as: 167 

%)
II

I
(η

platefilter

plate
KEM 100×

+
=−                                                                                             (3) 169 

  170 

where Iplate and Ifilter

Therefore, the particle collection efficiency of 0-10

 are the currents that detected by the EM-K1 and EM-K2, respectively. 171 

th stage impactor measured using 172 

electrometer as well as EM-K or APS was compared. The charging efficiency of the NCTU 173 

charger from 10 nm to 4.689 µm under +3.6 kV of operating voltage were tested and fitted in 174 

previous study. The charging efficiency for particle size ranging from 0.9 to 4.689 µm was 175 

increased linearly. The charging efficiency of particle size less than 18 nm, however, was 176 

decreased rapidly. Therefore, the particle penetrations (Pn) was fitted in three parts as the 177 

follow equation: 178 
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 181 

However, the particle with larger size agglomerated easily in the chamber. When the 182 

particle agglomerated, the charged of the particle will be increased which may cause the 183 

current was overestimated and then induce the offset of the collection efficiency curve. 184 

Therefore, the overestimated current was calculated as: 185 

 186 

DnnpnpDn DNQeDnI η××××= )()(                                                           (5) 187 

 188 

where IDn is the current overestimated; np(Dn) is the elementary units of charge with Dn of 189 

particle size; e is the unit charged of the electron; Q is the operating flowrate; Np(Dn) is the 190 

number concentration of the Dn of particle size and ηDn

 194 

 is the particle collection efficiency of 191 

the Dn particle. The calibrated current was then calculated based on eq. 5 and the number 192 

distribution measured by the APS. 193 

Number concentrations and distributions comparison 195 

After the testing of the particle collection efficiency, the 6-10th stage impactor and 196 

after filter stage was series connected for number concentrations and distribution 197 
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measurement. The polydisperse DOS particle with 133 nm of CMD was generated using the 198 

same method as the nanoparticle collection efficiency calibration which was shown above. 199 

The generated particle was separated to two aerosol flows after passing through the 200 

neutralizer. One of the flow was introduced into the SMPS and the other was introduced into 201 

the EMCI. The current of each stage impactor was measured individually because of only one 202 

EM-K was used. 203 

 204 

3. Results and Discussion. 205 

The design of the nozzle plate 206 

The results of the nozzle diameter and number of each stage impactor were displayed 207 

in Table 1. When the operating flowrate was reduced from 30 to 16.7 L/min and the number 208 

of the nozzles were maintained, the nozzle size of the 1-5th stage impactor was modified from 209 

0.889, 0.38, 0.247, 0.72 and 0.04 to 0.68, 0.31, 0.18, 0.06 and 0.036 cm, respectively. For 6-210 

10th stage impactor, the nozzle sizes were maintained but the number of the nozzle was 211 

reduced by the nozzle masks from 900, 900, 2000 and 2000 to 500, 500, 1110 and 1110, 212 

respectively. The last stage impactor with 0.032 µm of dpa50

 215 

 was tested by two designs with 213 

different number of the nozzle, 1640 and 2000, respectively. 214 

 216 
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 217 

Electrometer comparison 218 

Fig 4. Shows the result of the electrometer comparison from AE and EM-K. The 219 

result displayed that the current measured by the EM-K was about 15% underestimated 220 

comparing with that of the AE when the current ranges from 0-900 fA. The bias between the 221 

AE and EM-K is due to the different connection of the pin to electrometer. The HEPA filter 222 

inside the AE was contacted with the circuit board through the pin directly, but the triaxial 223 

cable was used to connect the pin and the EM-K for the EMCI. The used of the triaxial cable 224 

which is different from the connection method of the AE was the main concern that induced 225 

the measurement bias. 226 

 227 

Particle collection efficiency curves 228 

Fig 5 shows the calibrated particle collection efficiency curves of the 1-10th stage of 229 

the EMCI measure by AE, equation 1 and compared with those of the MOUDI. The 230 

calibration results together with the design parameters are also summarized in Table 1. It 231 

shows that after adjusting proper jet to plate distance, the dpa50 values of the 1-10th stage of 232 

the EMCI are close to the designed values, which are 10, 5.6, 2.5, 1, 0.56, 0.32, 0.18, 0.1, 233 

0.056 and 0.032 µm, respectively. It can be seen that the pressure of the downstream of the 7-234 

9th stages of the EMCI were less than those of the NMCI. This is because the averaged nozzle 235 
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size of these stages of EMCI were larger than those of the NMCI due to the manual cutting 236 

bias of the nozzle mask. Therefore, the jet-to-plate distance of these stages impactor were 237 

also reduced as comparing with these of the NMCI. Furthermore, the collection efficiency 238 

curves also displayed the good sharpness in EMCI from 1-10th

 247 

 stage impactor, 1.17, 1.17, 239 

1.32, 1.19, 1.33, 1.25, 1.25, 1.34, 1.38 and 1.48, respectively. The both collection efficiency 240 

curves of the EMCI measured by AE and equation (2) were agree well with those of the 241 

MOUDI when the particle size was less than 1 µm. However, when the particle size was 242 

greater than 1 µm, the curves measured by AE were also agree well, but the results measured 243 

by AE-EM-K system was offset. The offset curves was then calibrated using the equation (5) 244 

as shown in Fig. 6. The result show that after calibrating, the collection efficiency curves 245 

were fitted well than those detected by AE/APS.   246 

Number concentration and distribution comparisons 248 

Fig. 7 shows the result of the number distribution measure by EMCI and SMPS. The 249 

results shows that the number concentrations measure by EMCI and SMPS were almost the 250 

same, 1.83 × 106 × and 1.90 106 (#/cm3), respectively with about 3 % of bias. The both 251 

distribution were almost agree well with each other, the result of the EMCI was a little bit 252 

offset to the left. This is because the frequency of the SMPS was 128, but the EMCI was only 253 
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measured in 10 frequency. However, these also show the good result on number distribution 254 

measurement. 255 

 256 

4. Conclusions 257 

In this study, an electrical micro-orifice cascade impactor (EMCI) with the operating 258 

flowrate of 16.7 L/min was developed for size distribution monitoring in real-time using the 259 

electrometers. The EMCI consists of a NCTU micro-orifice cascade impactor (NMCI), a 260 

NCTU unipolar charger and a Keithley 6514 electrometer. To reduce signal noise, the main 261 

body of the impactors is designed to have a 3-layer structure based on the concept of a 262 

faraday cage. Aerosol particles are charged first when passing through the charger. After the 263 

charged particles are collected on the impaction plates, the low current signal from each of all 264 

stages is detected using the electrometer and the measured currents are then converted to size-265 

classified number concentrations by the theoretical equation corrected for the particle 266 

charging efficiency.  267 

The calibration results of the impactor showed dpa50 values are very close to the 268 

design values at the operating flow rate of 16.7 L/min. The operating voltage of the unipolar 269 

charger ranged between +2.6 to +3.8 kV with the optimal charging efficiency found at +3.6 270 

kV. Comparing with the ELPI+ charger, the charging efficiency is nearly the same when the 271 

particle size is greater than 56 nm up to 10 µm. However, the charging efficiency in the size 272 
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range of 10 to 56 nm is higher than that of the ELPI+ charger by as much as 93 to 11 %. The 273 

signals of the EMCI were compared with those of the TSI Aerosol Electrometer (AE) and 274 

found that the bias of the EMCI is less than 15 % in the range of 3-1500 fA.  The collection 275 

efficiency measured by AE/APS, AE+EM-k system and MOUDI were agree well with each 276 

other after charging calibration. The results of the collection efficiency curves also showed 277 

the great sharpness in this study 278 

Finally, the EMCI was used for the size distribution measurement of laboratory 279 

generated aerosols. Test results showed that the size distribution measured by EMCI agrees 280 

well with that of the SMPS in nanoparticle size range. More calibration studies and 281 

comparison tests are under way using multiple electrometers installed at all stages. 282 
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Table 344 

 Table 1 Summary of the calibration results and the design parameters of the MOUDI, NMCI 345 

and the EMCI 346 

 347 

a the data given in Marple et al. (1991) 348 

b the data given in Liu et al. (2013) and Chien et al. (2015) 349 

c P=absolute pressure at stage exit with all upstream stages in place, P0

 351 

=ambient pressure. 350 

352 

stage 
a

 MOUDI b
 NMCI EMCI 

d
(µm) 

pa50 jet-to-plate 
(mm) 

nozzle  
size (cm) 

cP/P  0 
d
(µm) 

pa50 jet-to-plate 
(mm) 

nozzle  
size (cm) 

cP/P  0 
designed  

dpa50 

d
(µm) (µm) 

pa50 jet-to-plate 
(mm) 

nozzle 
 size (cm) 

cP/P σ0 g 

1 9.9 4.45 0.889 1  9.9 4.45 0.889 1  10 9.92 6.51 0.68 1 1.17 

2 6.2 3.73 0.38 1  6.2 3.73 0.38 1  5.6 5.62 5.55 0.31 1 1.17 

3 3.1 2.39 0.247 1  3.1 2.39 0.247 1  2.5 2.48 4.37 0.18 1 1.17 

4 1.8 1.22 0.137 1  1.8 1.22 0.137 1  1 1.02 3.99 0.06 1 1.19 

5 1 0.7 0.072 0.99  1 0.7 0.072 0.99  0.56 0.55 4.35 0.036 0.99 1.2 

6 0.56 0.53 0.04 0.97  0.56 0.53 0.04 0.97  0.32 0.32 1.12 0.014 0.94 1.25 

7 0.32 0.55 0.014 0.95  0.323 0.55 0.136 0.95  0.18 0.18 0.3 0.011 0.92 1.25 

8 0.18 0.58 0.009 0.89  0.179 0.58 0.108 0.89  0.1 0.098 0.63 0.0054 0.74 1.34 

9 0.097 0.77 0.0055 0.76  0.102 0.78 0.0054 0.72  0.056 0.05 0.78 0.0054 0.49 1.38 

10 0.057 0.68 0.0052 0.53  0.557 0.68 0.0054 0.47  0.032 0.03 0.38 0.0054 0.31 1.48 
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Figure captions 353 

Figure 1. The design of (a) each stage impactor and (b) after filter stage of EMCI 354 

Figure 2. Experimental setup to measure the nanoparticle collection efficiency  355 

Figure 3. Experimental setup to measure the micron and submicron particle collection 356 

efficiency by (a) APS and (b) charger + EM-K system 357 

Figure 4. The result of electrometer comparison (AE vs. EM-K) 358 

Figure 5. Particle collection efficiency curves of the 1-10th

Figure 6. Particle collection efficiency curves for micron particle calibrated by eq. 5 360 

 stage of the EMCI  359 

Figure 7. Number distribution comparison of lower stages of EMCI and SMPS 361 

 362 

363 
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Abstract: An electrical micro-orifice cascade impactor (EMCI) with the operating flowrate of 
16.7 L/min was developed for real-time size distribution monitoring in this study. The EMCI 
consists of a unipolar, modified-NMCI (NCTU micro-orifice cascade impactor), and Keithley 
6514 electrometer. The c alibration r esults of  t he i mpactor s howed t hat t he c ut-off 
aerodynamic diameters (dpa50

 

) of 9.92, 5.62, 2.48, 1.02, 0.563, 0.321, 0.178, 0.097, 0.056 a nd 
0.032 µm, which are ve ry close to the design values. The operating vol tage of  the unipolar 
charger ranged between +2.6 to +3.8 kV with the optimal charging efficiency found at +3.6 
kV. Comparing with the ELPI+ charger, the charging efficiency is nearly the same when the 
particle size is greater than 56 nm up to 10 µm. However, the charging efficiency in the size 
range of  10 t o 56 nm  i s higher t han that of  t he ELPI+ charger b y as much as 93 t o 11 % . 
Finally, t he E MCI w as used f or t he s ize di stribution m easurement of  l aboratory generated 
aerosols. Test results showed that the s ize distribution measured by EMCI agrees well with 
that of the SMPS in nanoparticle size range. More calibration studies and comparison tests are 
under way using multi-channel electrometer installed at all stages. 

Keywords: impactor, micro-orifice cascade impactor, unipolar charger, aerosol measurement

1. Introduction 
Cascade impactors are w idely us ed to 
measure aerosol di stribution a nd t he 
collected samples can also be us ed for 
chemical c ompositions a nalysis. H owever, 
the s olid pa rticle bounc es, ove rloading 
effect a nd noz zle c logging a re t he m ain 
issues tha t c ause the  s ampling bias. 
Moreover, even if the ELPI+ can be used to 
mearsure aerosol s ize di stribution i n r eal-
time, the tr aditional pr oblem in LPI s till 
exist. 
The a ims of  t his s tudy i s t o de velop a n 
Electrical mic ro-orifice cas cade i mpactor 
(EMCI) which can be  used to measure the 
size distribution in real-time and solve most 
practical con cerns in traditional cas cade 
impactor with 16.7 L /min of  ope rating 
flowrate.  
 

2. Materials and Methods 
2.1 EMCI composition 
The E MCI c onsists of  a N CTU uni polar 
charger, a N MCI and a Keithley 6514  
electrometer. The charger shows the greater 
charing efficiency for na noparticles as  
compared to that of  the ELPI+ in previous 
study. T he NMCI was r e-designed for 
preventing t he e nvironmental noi se w hen 
using t he l ow c urrent m easurement a nd 
decreasing t he flowrate f rom 30 t o 16.7 
L/min.  

2.2 Calibration, test and comparison  
The cur rent w as de tected using t he af ter 
filter s tages of  the  E MCI and the A erosol 
Electrometer (AE, TSI 3068) first, to show 
the ac curacy of  t he l ow cu rrent 
measurement. The p article col lection 
efficiencies w ere al so be conduc ted using 
the m ethods de scribed i n Liu e t a l. ( 2013) 
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and Järvinen et a l. ( 2014) respectively. 
Finally, the  n anoparticle s tage impa ctors 
were c onnected for s ize di stribution 
comparison with SPMS and ELPI+ 
 
3. Results & Discussion  
In the performance test of the electrometer, 
the 15 %  bias was found in the range of 3-
1500 fA as compared to AE. The results of 
the col lection efficiency cur ves 
measurement di splay t hat t he cur ves 
measured in two method agree well to each 
others a fter mul tiple c harge c alibration, 
with 9.92, 5.62, 2.48, 1 .02, 0.5 63, 0.32 1, 
0.178, 0.097, 0.056, 0.0 32 µm o f cut -off 
aerodynamic diameter (dpa50
The r esult of  th e s ize di stribution 
comparison i n na no t o submicron pa rticle 
was shown in Figure 1. The concentrations 
measured b y three divices were very close 
to e ach ot hers, a bout 1.35 × 10

).  

5 #/cm3

 

. 
However, in CMD calculaitons, only EMCI 
and SMPS showed the close values, 70 and 
73 nm, respectively, and the ELPI showed 
the deviated value, 53 nm. 

Figure 1. The size distribution measured by 
EMCI, SMPS and ELPI, respectively. 

 
4. Conclusion 
The EMCI which c an solve m ost pr actical 
problems i n a erosol di stribution 
measurement b y c ascade i mpactor w as 
developed s uccessfully i n t his s tudy. 
Whether t he cha rging efficiency or  t he 
sampling pe rformance of t he E MCI ar e 
greater tha n the c ommercial ins truments. 
However, m ore calibration s tudies a nd 
comparison tests are necceary using mul ti-
channel electrometer installed at all stages. 
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